A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube

نویسندگان

  • J Stuart Bolton
  • Kang Hou
  • Stuart Bolton
  • Ray W. Herrick
چکیده

In this paper, an iterative method based on the transfer matrix approach was developed for evaluating sound speed and attenuation constant of air. If the air inside the impedance tube is treated as the tested material, such as porous materials, the transfer matrix approach can be easily used to identify the air’s acoustic properties. Then an iterative method can be applied in the post-processing to estimate the complex air wave numbers accurately. The result from the experiments showed that the air temperature inside the tube was a little higher than the ambient temperature and that the corrected Temkin formula gave the best theoretical prediction of sound speed in the tube. In addition, the approach may be extended to the accurate measurement of viscosity and sound velocity of liquids and gases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative

In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...

متن کامل

Effect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary

The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

Problem of Rayleigh Wave Propagation in Thermoelastic Diffusion

In this work, the problem of Rayleigh wave propagation is considered in the context of the theory of thermoelastic diffusion. The formulation is applied to a homogeneous isotropic thermoelastic half space with mass diffusion at the stress free, isothermal, isoconcentrated boundary. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obt...

متن کامل

The Effect of Dynamic Permeability on Velocity and Intrinsic Attenuation of Compressional Waves in Sand

Stress waves contain useful information about the properties of porous materials; they can be recovered through different non-destructive testing methods such as crosswell, vertical seismic profile, borehole logging as well as sonic tests. In all these methods, it is crucial to assess the effects of frequency on wave attributes including velocity and intrinsic attenuation. The dependency of per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013